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CHAPTER 3

NEUTRON PHYSICS

The most distinct processes in a nuclear reactor are those involving neutrons.
Neutrons initiate and maintain the fission chain reaction. Their energy, con­
centration, and multiplication determine the nuclear reaction rates and power
densities. We will consider some of the introductory aspects of these processes
beginning with a study of the interactions between neutrons and nuclei.

3.1 NEUTRON-NUCLEUS INTERACTIONS

Consider an ensemble of neutrons migrating in a medium which consists of one
atomic specie identified by AX. The atoms may be viewed as being essentially
stationary although the neutrons are always in motion with respect to the
position of the atoms. Since the neutrons possess no net electric charge,
their path of motion is unaffected by the negative electric field attributable
to the electron cloud which surrounds each nucleus nor are they influenced by
the positive electric field of the protons in the nucleus. The neutron can
therefore interact most readily with the nucleus in anyone of a variety of
ways. Some of the more obvious and important interactions can be descirbed
as follows:

1. Neutron capture: the nucleus captures a neutron and becomes
transmuted into a different or unstable isotope of the same
element.

2. Clastic scattering: the neutron undergoes 0 billiard-ball
type collision with a nucleus.

3. Nuclear Fission: following addition of a neutron to the nucleus.
the nucleus breaks up into two fission fragments.

We consider a discussion of the above neutron-nucleus interactions with an
emphasis on those processes which are of particular importance in a CANDU
reactor.

The capture process represents a transmutation whereby the nucleus becomes
transformed into another stable or unstable isotope of the same element. For
example, the deuterium nucleus in the moderator has a small affinity to capture
neutrons. This may be represented by

D + n ~ T (3.1)
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Here 0 represents a deuterium nucleus (Hydrogen-2) and T is a tritium nucleus
(Hydrogen-3). Tritium is a radioactive beta emitter and decays to stable
Helium-3 by beta decay

T -+ 3He + - 13, (3.2)

with a half-life of 12.3 years; the beta particle has an energy of 18 keY. This
process if of considerable regulatory importance because tritium, being a hydro­
gen isotope, combines with oxygen to form water and therefore could be ingested.

Many structural elements in a reactor contain trace elements of cobalt which
exists as Cobalt-59 with 100% abundance. Neutron capture leads to unstable
Cobalt-60 which decays to Nickel-60 with a half-life of 5.26 years and a meta­
stable state with Tl / 2 = 10.5 minutes. Several excited states in nickel will
be attained each of which eventually decays to the ground state. Symbolically
we may write this process as

59Co + n -+ 60Co -+ 60Ni + 13- (3.3)

One undesirable feature of this process is that radioactive Cobalt-50 may, under
some conditions, become transported through the primary cooling system and thus
present a radiation hazard. However, because Cobalt-60 is a useful isotope in
industrial radiography and medical therapy, it may be produced purposely in a
power reactor. The detailed energy level structure of the Cobalt-60 decay to
excited levels of Nickel-60 are illustrated in Fig. 3.1. Note the energies of
the gamma rays associated with this decay.

As a final example of neutron
absorption we cite here neutron
capture in Boron-10 which leads
to the emission of an alpha
particle also called Helium-4:

lOB + n -+ 7Li + 4He (3.4)

This reaction is used in some
neutron detectors which are
employed during the early stages
of reactor start-up; the reason
for this method of neutron detec­
tion is that the emitted alpha
particle, being a doubly charged
ion, is readily detected in an
ionization chamber.

FIG. 3.1: Decay processes
for Cobalt-60 and energy
levels of Nickel-50.
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The neutron-nucleus elastic scattering process is important because it represents
the principle means whereby high energy neutrons lose energy and thereby enhance
the neutron reproduction process. In a neutron-deuterium interaction we may
represent this process simply by

D+ n ~ n + D . (3.5)

It is informative to consider the neutron energy loss in such o.n elo.stic sco.tter­
ing process. Consider the head-on elastic scattering collision as suggested in
Fig. 3.2.

NEUrF\ON COLLIDING WItH A NUCLEUS.;,

nuonr: CUlUSlri~i AFTFR r.nUISION

FIG. 3.2: Elastic collision between a thermal neutron and a stationary nucleus.
The symbols mn and mA denote the mass of the neutron and nucleus
respectively; the several particle speeds vi, vf and Vf correspond to
the particle directions noted on this figure.

The subscripts i and f refer to the initial and final state of the variables; the
other symbols are used as previously defined. By conservation of kinetic energy,
we must have

(3.6)

where mn and mA represent the mass of the neutron and nucleus respectively, Vj
andvf represent the initial and final neutron speed; and Vf represents the flnal
speed of the nucleus. By conservation of momentum, we also have

mnvi = mAVf - mnvf

Equation (3.6) may be rewritten as

2 2 mA 2
Vi-Vf=mnVf

or

(3.7)

(3.8)

(3. g)

whil e Eq. (3.7) reduces to
rnA

vf = m Vfn
(3.10)
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Dividing Eq. (3.1) by Eq. (3.10) provides the expression for the speed of the
nucleus after collision, Vf,

(3.11)

When this expression for Vf is substituted into Eq. (3.10) we obtain an explicit
expression for the kinetic energy of the neutron after the head-on elastic scat­
tering collision in terms of its initial kinetic energy:

rnA
Vi + vf = rnn (Vi - vf) .

That ;s
rnA rnA

vf(l + m
n

) = vi(l - rn
n

) ,

or squaring each side and multiplying by 1/2 mn, we obtain

rnA rnA 2
Ef = [(l - 1l1n) / (l + 111n) ] Ei .

To a very close approximation we may use

rnA
A = ­m 'n

where A is the atomic mass number of the nucleus as previously used.
define a parameter a,

(1 - A) 2
a = 1TA '

and therefore write Eq. (3.14) compactly as

Ef = aEi .

(3.12)

(3.13)

(3.14)

(3.15)

We now

(3.16)

(3.17)

This simple expression, relating the neutron energy before scattering with a
nucleus, Ei, to its energy after collision, Ef, provides some useful insight
to a fuller understanding of neutron slowing down by elastic scattering collisions.
Clearly, the parameter a depends upon the atomic mass number of the nuclear
specie with which the neutron undergoes an elastic scattering interaction. Consider
a heavy nucleus such as, say Uranium-238. For this case, according to Eq. (3.16)

1 - 23B 2.
a = (1 + 238) = 0.9833 . (3.18)

By reference to Eq. (3.17) we conclude that a neutron will still retain 98.33% of
its initial energy per elastic scattering interaction. In contrast, for a light
nucleus, say deuterium, we have

(1 - 2)2
a. = ~ = 0.1111 , (3.19)
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which means that the neutron will only retain 11.11% of its initial energy; hence
88.89% of the neutron energy is lost in one elastic scattering interaction with
deuterium in the heavy water. Clearly, since each neutron interaction may lead
a possible non-productive neutron removal by neutron absorption, a light nucleus
is to be preferred for neutron slowing down purposes since this minimizes the
number of neutron-nucleus interactions. This conclusion represents the physical
basis for the long and continuing interest in light nuclei as moderators: light
water, heavy water, graphite, and berillium.

Equation (3.17) describes the change in neutron energy specifically for the ~dse

of a head-on collision. A detailed analysis can be undertaken to show that for
elastic scattering collisions the final energy is also related to the scattering
angle of the neutron and can be shown to be given by

(3.20)

where 6c represents the scattering angle in the centre of mass system. Note that
if 6c is 180°, a situation which applies for a head-on collision, the above equa­
tion reduces to Eq. (3.18).

3.2 FISSILE AND FERTILE NUCLEI

The most important and most dominant fission process in a CANDU nuclear reactor
occurs in Uranium-235 in the Uranium-Oxide fuel pellets:

235U + n + (FP)l + (FP)2 + vn (3.21)

As indicated in Chapter 2, Section 4, the CANDU reactor does breed fissile
Plutonium-239 by neutron capture in Uranium-238. The fission in Plutonium-239
is similarly represented by

239. Pu + n + (FP)l + (FP)2 + vn (3.22)

There exists a definite, although small probability that, before Pluton1um-239
can fission, it may capture the neutron and beoome transmuted to Plutonium-240.
A further neutron capture leads to another readily fissile nucleus, Plutonium­
241. The entire process may be represented by the following sequence of
processes:

(3.23)

(3.24)

If some natural thorium should be contained within the nuclear fuel then, as we
pointed out in Chapter 2, fissile Uranium-233 is produced which again fissions
readily by thermal neutrons:



32

233U + n ~ (FP)l + (FP)2 + ~n (3.25)

Up until now we have referred to Uranium-238 as being a nucleus which. as a
consequence of capturing a neutron, initiates a nuclear transformation process
yielding fissile Plutonium-239. It is known that, although Uranium-238 will not
fission by thermal neutron. a high energy neutron can cause fission:

238U+ n + (FP)l + (FP)2 + vn (3.26)

This is only possible if the neutron energy exceeds 1.3 MeV. Approximately two
percent of the fission neutrons in a CANDU reactor emerge as a result of this
fast fission process.

We summarize here the fissile and fertile nuclei in order of their importance in
a CANDU reactor.

Fissile Nuclei: Uranium-235 (supplied in natural uranium fuel).
Plutonium-239 (by transmutation from Uranium-238 in

natural uranium fuel).
Plutonium-24l (by transmutation from Plutonium-239),
Uranium-238 (associated with fast neutron fission only),
Uranium-233 (by transmutation if thorium present).

Fertile Nuclei: Uranium-238 (to produce Plutonium-239 by transmutation).
Thorium-232 (to produce Uranium-233 by transmutation).

3.3 FISSION NEUTRONS AND THERMAL NEUTRONS

The most energetic neutrons in a nuclear reactor are those which have just emerged
from fission. These neutrons are not monoenergetic but follow a statistically
reproducible distribution; in Fig. 3.3 we show the general shape of such a distri­
bution. Although no satisfactory theory has been developed to describe this energy
spectrum theoretically. a number of empirical functions have been obtained which
prOVide a satisfactory fit to the experimental results. Two such distribution
functions describing the number of fission neutrons per unit energy, nf(E}, are
given by

nf(E} = O.770e-O. 775;r • (3.27)

and

nf(E) = O.453e-l.034Esinh(2.29E}

where E is expressed in units of MeV.

(3.28)
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FIG. 3.3: Energy distribution Of neutrons appearing in nuclear fission.

The most probable energy of a fission neutron is obtained by the condition

dnr(E) - 0
dt - (3.29)

where d/dE defines differentiation with respect to energy. In this manner the
most probable energy of a neutron appearing as a result of fission can be found
to have the value of 0.65 MeV. Of course, as soon as a neutron scatters from a
nucleus its energy will decrease., Sec. 3.1.

The average fission neutron energy is defined by

<E> = J:E nf(EldE/I:nf(EldE (3.30)

When the above functions are inserted in Eq. (3.30) and the indicated integration
carried out we obtain a value of about 1.8 MeV. The numerical values for the most
probable energy and for the average energy may vary by some 10% for the several
fissile nuclei.

While the fission neutrons possess the h1ghest energ1es in a nuclear reactor ­
energies in the low MeV range - the lowest energy neutrons, called thermal neutrons,
possess energies in the eV range. This lower energy range is associated with
those neutrons which have attained a state of thermal equilibrium in the medium
similar to that obtained by the molecules in a gas. Indeed, this analogy has been
used to describe the energy distribution of neutrons and is called the Maxwell­
Boltzmann distribution.

( ) 21rn 1/2
nME = 3/2 E exp[-E/kT],

( rrkT)
(3.31)
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where n is the total neutron density, k is the Boltzmann constant, T is the
temperature on the Kelvin scale, and E is the energy of the neutrons.

This distribution is illustrated in Fig. 3.4; it is a very close approximation
to the actual distribution of thermal neutrons in the moderator of the CANDU
reactor. A slight distortion from this ideal representation generally exists
and has the effect of shifting the distribution towards higher energies; this
shift, called spectrum hardening, is attributed to preferential neutron absorption
with decreasing energy and to neutron slowing down effects for higher energies .
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FIG. 3.4: Energy distribution of thermal neutrons in a reactor as predicted by
theory (Maxwell-Boltzmann) and as observed.

The Maxwell-Boltzmann distribution is most useful in providing single-parameter
descriptions of these thermal neutrons. For example, the most probable neutron
energy is given by differentiation of Eq. (3.21):

~~(E) = 0
dE

Solving for the energy which, by this definition, is the most probable neutron
energy designated by Ep' results in

1
Ep = 2" kT (3.33)

The most probable neutron speed is obtained by replacing E by its kinetic energy

v =p

1 2 1- mv = - kT2 p 2

and solving for vp

kT
m

(3.34)

(3.35)
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For the case of room temperature we use T 293°K to obtain

vp = 2200 m/s = 4920 mph. (3.36)

This corresponds to a neutron energy of
1 2Ep = L mvp = 0.025 eV . (3.37)

Many energy dependent neutron-nucleus interaction parameters are often quoted as
the values corresponding to this energy of 0.025 eV (2200 m/s).

In Fig. 3.5 we prOVide a graphical representation of the relative location of the
Maxwell-Boltzman distribution and the energy distribution of the fission neutrons.
On this figure we indicate the three dominant energy ranges which are used to
describe neutron processes in a nuclear reactor. The intermediate energy range
is important because neutrons must slow down through this range before they can
become effective in contributing to the neutron chain reaction.
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FIG. 3.5: Schematic representation of the distribution of neutrons with energy.

3.4 CROSS SECTIONS AND NEUTRON FLUX

We indicated in the preceding section that when neutrons first appear in the
nuclear reactor they emerge as a consequence of a fission process and possess
an energy in the million electron volt range. In their migration through the
medium, these neutrons undergo scattering interactions which lead to a loss of
kinetic energy until the neutron population attains a thermal equilibrium in the
medium; this represents an energy loss of 8 orders of magnitude. Alternatively,
these neutrons may be absorbed by a nuclide in the core and thus be lost;
similarly, some neutrons may even escape from the reactor core and be captured
in the reactor shield.
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To provide a quantitative framework for our further analysis, we consider a
space and energy dependent neutron density distribution function represented
by n(r,E) and defined as

~

n(r,E) = number of neutrons per unit volume at the point r in
~ the reactor and par unit anergy at E. ~

The total number of neutrons per unit volume of all energies at the point! is
hence given by integration over all neutron energies

n(r) = [n(r,E)dE
~ ~

o

(3.38)

If we now suppose that the material of interest contains N(~) nuclei per unit
volume at each point in the medium, we may assert that the lnteraction density­
rate per unit energy for the i'th type of interaction, designated by Fi(r,E),
may be represented by an equation which literally may be stated as

(

1) densities of nuclei, N(t)
2) density of neutrons per

proportional to unit energy, n(~,E)
3) speed of neutrons of

energy E, v(E).
(

number of i 'th type ~
neutron-nucleus
interactions per unit
energy per unit volu
per second, Fi(!,E)

Symbolically, we may write this proportionality

Fi(r,E) « N(r)n(r,E)v(E)
~ ~ ~

statement as

(3.39)

or, introducing an energy dependent proportionality constant. ai(E), we write

F,'(r,E) = G,,(E)N(r)n(r,E)v(E) .
~ ~ ~

(3.40)

Dimensionality considerations require that Gi(E) possess units of area, cm2 •
The name microscopic cross section has been assigned to this parameter. It has
been found convenient to define the unit barn, abbreviated b, by

-24 21 b = 10 cm . (3.41)

The subscript i is used to specify the various possible neutron-nucleus inter­
action processes. For example, the following cases may be enumerated:

°f(E):
Ga(E):
Gc(E):
Gs(E):
G (E):

y

etc.

fission process.
absorption process,
capture process,
scattering process,
capture-gamma process.
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The total microscopic cross section is given by a summation of all individually
identifiable processes

(Jt(E) = (Ja(E) + (Js(E) + ••..

Here we have defined

(3.42)

(3.43)

Figure 3.6 provides a graphical representation of the energy dependence of some
microscopic cross sections of interest to the CANDU system. It has been found
that the microscopic total cross sections for many nuclei possess an energy
dependence which may be characterized by the three dominant features as shown
in Fig. 3.7
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FIG. 3.6: Energy dependence of the
fission and capture cross section in
uranium.

FIG. 3.7: Typical energy dependence
of neutron capture cross sections for
many nuclei.

The extensive use of the products (Ji(E)N(~) and n(r,E)v(E) has led to the wide­
spread adoption of the following Quantities. A macroscopic cross section L;(r,E)
for the ilth type of neutron-nucleus process is defined by the product of the
microscopic cross section and the atomic density of the interacting nuclei

Li(X.E) = (J;(E)N(!)

and possesses units of cm- l .
defi ned by

(3.44)

The energy dependent neutron flux, ~(r.E). is
-+

(3.45)
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The interaction density rate per unit energy for the i'th type of process is
thus given by

F,,(r,E) = El'(r,E)~(r,E) ,
+ + +

or, if no misunderstanding can arise, simply as

(3.46)

(3.47)

(3.48)

As an example of the use of these various terms we write the total number of
fission reactions per unit volume at r in the reactor core as

+

Ff(rl = !"'f(r.EJo(r.EldE
o

Similarly, the total number of fission neutrons appearing per cm3 at r is given
+by

Sf(r) = ~V(E)'f(!.E)O(!.E)dE ,
o

(3.49)

(3.50)

(3.51)

where v(E} represents the average number of fission neutrons appearing per unit
energy per fission as a function of energy.

It is now a simple matter to derive numerous expressions of interest in reactor
analysis. For example, the power density at a point of interest is obtained
directly from the fission density rate by the use of the appropriate conversion
constants which relate the power density in MeVis to the desired power units of
interest. Thus, we write

p(r) = K[!.f(r.E)~(r.E)dE •+ + +
o

for the power density and, by an integration over the reactor volume, V, we get

P " KJ:Iv'f(!.EJO(!.E)d!dE ,

for the total reactor power. Here K is the appropriate conversion constant.

3.5 NEUTRON SLOWING DOWN

Neutrons possessing energies above 1 eV and below 10 keV are commonly called
intermediate-energy neutrons. All fission neutrons must, if they are to con­
tribute effectively to the nuclear chain reaction, pass through this intermediate
energy domain. The dominant mechanism for slowing down to thermal energies is



39

the elastic scattering process discussed in Section 3.2. We recall that if a
neutron with an initial energy Ei is elastically scattered by a nucleus AX
through an angle Bc in the centre of mass coordinate system, then its final
energy will be given by Ef:

(3.52)

where a is a function of the atomic mass number of the nucleus and defined hy

_ (A - 1)2ct - A+1 (3.53)

A minimum neutron energy can be attained by a direct head-on collision. This
energy EMin is given by

EMin = ctEi . (3.54)

The final neutron energy therefore is in the energy interval

(3.55)

(3.56)

Whenever a neutron of energy Ei enters into a reaction with a nucleus, the
probability that a scattering event will take place is given by the appropriate
ratio of cross sections evaluated at energy Ei:

°s(E;)
Probability of neutron scattering at energy Ei = 0t(E

i
)

The probability of neutron capture is similarly given by

Probability of neutron capture at energy E· = °c(Ei) (3.57)
, °t{Ei)

It has been found that for many elements this ratio, Eq. (3.57), can be undesir­
ably high; this implies that many neutrons become captured. The effect of this
parasitic capture in the intermediate energy domain can be minimized by a choice
of moderators which minimize the number of interactions in the slowing down
process. As indicated in Chapter 2, this would suggest that it would be desirable
to minimize ct. These two characteristics suggest that a good neutron moderator
possess the following two properties:

1) low atomic mass number to maximize the energy loss of neutrons
per elastic scattering, and

2) a large scattering cross section or, equivalently, very small
capture cross section.

We will consider quantifying these terms.

Consider a fission neutron of energy EFISS which undergoes an elastic scattering
collision and has its energy reduced to [1. This neutron then undergoes another
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scattering process to attain energy E2. This
of Ncollisions until thermal energy ETHER is
of the ratio EFISS/ETHER as

R.n(EFISS) Qn(E FISS x ~ x
ETHER E1 E2

R.n(EFISS) xEl ... x

EN-l )x--
ETHER

x Qn (~N-l )
THER

(3.58)

We thus have a sum of N terms each representing a logarithmic energy decrement
per elastic scattering collision. This term has been studied extensively and,
under rather general conditions, can be shown to be given in terms of the atomic
mass number of the moderator by

(3.59)

(3.60)

For A > 5, this expression can be approximated by

Ei 2
R.n(E

f
) ~ A+ 2/3

It has become customary to use the symbol ~ for the logarithmic energy decrement.
That is

(3.61)

We may now identify a parameter which can be used to compare the effectiveness
of a moderator in slowing down neutrons. In view of our discussion of the
importance of a large scattering cross section, the desirability of a small
absorption cross section, and the necessity of a large neutron energy loss per
elastic scattering collision, we define the term moderating ratio by

(J

t~oderating Ratio = ...2. ~ (3.62)
(Ja

Typical values appropriate to several possible moderators are listed in Table
3.1 where we note the excellent neutron moderating property of heavy water.

Moderator Moderating Ratio

Heavy water
Heavy water
Graphi te
BerilliulII
Light Water

(pure)
(0.25% H20)

4900
2100
170
150

70
-- ------ - _.---

TABLE 3.1: Moderating ratios for several moderators.
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We can extract an additional useful parameter from this type of an analysis.
Referring to Eq. (3.58) and noting that since Nc collisions are represented ­
each of which is associated with a logarithmic energy decrement - we write

in(EFISS) = N I; •
ETHER c

Solving for Nc using EFISS = 2 x l06eV and ETHER = 0.025 eV yields

N = in(8 x 107) = 10.8
c t; 1;'

where t; is given as a function of atomic mass number by Eq. (3.59). We may use
this expression to determine the number of collisions a neutron encounters from
an initial fission energy of 2 MeV to a thermal energy of 0.025 eV if its
logarithmic energy decrement is given by 1;. Typical values for a number of
materials are listed in Table 3.2.

Materi al

Hydrogen-l
Carbon-2
Iron-56
Urani um-238

Number of Elastic Collisions

85

110

516
>2100

--------------------------- ._---
TABLE 3.2: Number of elastic neutron collisions required to slow down from

fission to thermal energies.

3.6 ENERGY AVERAGING

In the preceding sections we have indicated the importance of neutron energy to
a more complete description of neutron induced processes. Although these
expressions involving integration over energy are correct, it is obvious that
the inclusion of the energy of the neutrons represents a considerable complication
in many reactor calculations. As a consequence, methods of establishing energy­
averaged or energy-equivalent expressions have been sought to permit a more
practical means of calculating reactor parameters. We will consider some of
these procedures and then identify the most frequently used expressions.

We have previously indicated that interaction densities, such as, say the
absorption density rate, could be written as a product of macroscopic cross
section and the neutron flux. That is

(3.65 )
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where we recognize that both the macroscopic cross section La and the flux ~

are, in general, space dependent and energy dependent. If we restrict our­
selves to a localized point description we may eliminate the spatial dependence
and concentrate on the energy dependence. The exact neutron absorption density
rate is clearly given by

Fa = r:La(E)~(E}dE = Nr:cra(E)n(E)j~E dE ,

where we have used the definitions

and

~(E) = n(E)v = n(E)~ .

(3.66)

(3.67)

(3.68)

Since aa(E) is generally known from experiment, the remaining problem then is
to determine the energy dependent neutron density. As we discussed previously,
Chapter 3, Section 3.3, the CANDU reactor is characterized by a highly thermal­
ized neutron population which means that n(E) can be written as

n(E) = 2wn 3/ 2 El / 2exp[-E/kT] .
(nkT)

(3.69)

If, in addition, aa(E) varies inversely with neutron speed then the integration
can be carried out immediately to yield

(3.70)

where Vo is equal to 2200 mis, that is the speed corresponding to peak of the
Maxwellian distribution; La(Eo) is the macroscopic cross section corresponding
to the energy Eo = 0.025 eV.

If the absorption cross section does not vary inversely with speed then a
correction factor has to be included. These factors are called g-factors and
are dependent upon the medium temperature. In general, we have for absorption

(3.71)

while for fission we write

(3.72)

Typical g-factors are listed in Table 3.3.
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200
400
600
800

1000

235U 239Pu

9a(T) 9f(T) ga(T) 9f(T)

0.9973 1.0025 1.3388 1.2528
1.0010 1.0068 1.8905 1.6904
1.0072 1.0128 2.5321 2.2037
1.0146 1.0201 3.1006 2.6595
1.0226 1. 0284 3.5353 3.0079 ._-._--_.-

(3.73)

TABLE 3.3: Selected g-factors for Uranium-235 and Plutonium-239 as a function
of temperature.

In addition to the 2200 m/s neutron flux, ~o' and the 0.025 eV macroscopic cross
section, ~(Eo)' there are other energy-averaged definitions which are frequently
used. For example, the thermal flux ~T is defined by

or = r:OM(EldE = r:nM(E)~ dE

Substituting the Maxwellian neutron distribution, Eq. (3.69), yields

(3.74)

(3.75)

which can also be written as

2
~T = lIT nVT .

This expression, defining the thermal flux is clearly temperature dependent.

Referring to Eq. (3.71) and Eq. (3.72) together with the definitions for the flux,
Eq. (3.70) and Eq. (3.74) suggest that it is still possible to write an inter­
action density as a product of the macroscopic cross section E and the neutron
flux ¢ if the g-factors are included in the definition of~. For the i'th type
of neutron-nucleus interaction density at a point ~ in the reactor core, one
may wri te

F·(r) = I>¢(r)
1 + 1 + '

where it ;s understood that

(3.76 )

(3.77)
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and

¢l ( r) = n( r) Vo .
-+ -+

We will use this notation in a subsequent analysis.

(3.78)


